SYNTHESIS AND STRUCTURE OF trans- $\mathrm{PtCl}_{2}\left(\mathrm{P}(\mathrm{t}-\mathrm{Bu})_{2} \mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}$, A PLATINUM(II) COMPLEX CONTAINING THE NEW LIGAND (DI-tBUTYL)CYCLOBUTYLMETHYLPHOSPHINE

BARBARA L. SIMMS and JAMES A. IBERS ${ }^{\star}$
Department of Chemistry, Northwestern University Evanston, Illinois 60201 (U.S.A.)
(Received September 16th, 1986)

Summary

The synthesis and spectral properties of trans-dichlorobis((di-t-butyl)cyclobutylmethylphosphine)platinum(II), trans- $\mathrm{PtCl}_{2}\left(\mathrm{P}(\mathrm{t}-\mathrm{Bu})_{2} \mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}$, and of the new phosphine (di-t-butyl)cyclobutylmethylphosphine, $\mathrm{P}(\mathrm{t}-\mathrm{Bu})_{2}\left(\mathrm{CH}_{2^{-}}\right.$ $\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), are described. The crystal structure of the Pt complex has been determined. The material crystallizes in the monoclinic system, space group $C_{2 h^{-}}^{5}$ $P 2_{1} / c$, with two formula units in a cell of dimensions a 8.521(2), b 12.774(1), c 14.374(2) $\AA, \beta 104.71(2)^{\circ}$. A total of 5667 unique reflections were measured on a CAD4 diffractometer at 113 K . The final value of $R(F)$ is 0.028 for those 4223 reflections having $F_{0}^{2}>3 \sigma\left(F^{2}\right)$. The crystal structure consists of the packing of discrete neutral molecules of trans $-\mathrm{PtCl}_{2}\left(\mathrm{P}(\mathrm{t}-\mathrm{Bu})_{2} \mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}$. A crystallographic center of symmetry is imposed on each molecule. Important intramolecular distances include $\mathrm{Pt}-\mathrm{P}, 2.353(1)$ and $\mathrm{Pt}-\mathrm{Cl}, 2.306(1) \AA$. The shortest nonbonding distance between the Cl atom and a carbon atom of a $\mathrm{t}-\mathrm{Bu}$ group is $\mathrm{Cl} \cdots \mathrm{C}(4), 3.387(3) \AA$. No interaction between the Pt atom and the cyclobutane ring is observed. The absence of extreme steric congestion in the complex may explain the lack of such an interaction.

Introduction

Certain transition metals, particularly the Pt group metals, catalyze the rearrangement of small strained-ring molecules to olefins [1.2]. Such C-C bond activation proceeds fairly readily compared with $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{H}$ bond activation in less strained rings or in simple, non-cyclic aliphatic hydrocarbons. However, in the presence of transition metals intramolecular bond activation is common in non-cyclic hydrocarbons that are part of a bulky phosphine or other donor ligand [3]. Usually a metal-carbon bond and thus a chelate ring results from the activation. These orthometallation reactions are extremely sensitive to steric factors, such as conges-
tion in the starting complex and size of the chelate ring in the orthometallated product [3b]. Generally, ease of orthometallation increases with increasing relief of ligand crowding by ring formation. Five-atom metallacycles form most readily [3a,4]. The importance of electronic factors is illustrated by the greater reactivity of aromatic $\mathrm{C}-\mathrm{H}$ bonds relative to weaker aliphatic $\mathrm{C}-\mathrm{H}$ bonds in orthometallation reactions [4].

The phosphine $\mathrm{P}(\mathrm{t}-\mathrm{Bu})_{2}\left(\mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2}\right)$ undergoes facile intramolecular activation of cyclopropane in its monomeric chloro complexes of $\mathbf{I r}^{\mathbf{I}}, \mathbf{P t}^{\mathbf{I I}}$, and $\mathbf{P d}^{\mathrm{II}}$ to form five-atom metallacycles that contain metal-carbon σ-bonds [2]. In contrast, in analogous complexes the related cyclobutylmethyl phosphine $P(t-B u)_{2^{-}}$ $\left(\mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$ discussed here is not activated [5]. In an attempt to understand this lack of reactivity we have performed a single-crystal X-ray structure analysis of trans $-\mathrm{PtCl}_{2}\left(\mathrm{P}(\mathrm{t}-\mathrm{Bu})_{2} \mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}$.

Results and discussion

Synthesis of (di-t-butyl)cyclobutylmethylphosphine
To prepare the phosphine we followed a method used to prepare $\mathrm{P}(\mathrm{t}-$ $\mathrm{Bu})_{2}\left(\mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2}\right)($ eq. 1$)$ [2b]. Traditional routes to $(\mathrm{t} \text { - } \mathrm{Bu})_{2}$ PR species, namely

reaction of alkyllithium reagents with $\mathrm{P}(\mathrm{t}-\mathrm{Bu})_{2} \mathrm{Cl}[6]$, were not available owing to the ease with which $\mathrm{LiCH}_{2} \widehat{\mathrm{CH}}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}$ rearranges to $\mathrm{LiCH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2}$ [7].

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathrm{P}(\mathrm{t}-\mathrm{Bu})_{2}\left(\mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$ consists of a singlet resonance at $\delta 21.47 \mathrm{ppm}$. This is upfield of the resonance ($\delta 28.5 \mathrm{ppm}$) reported for $\mathrm{P}(\mathrm{t}-\mathrm{Bu})_{2}\left(\mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2}\right)$ [2b]. Since the phosphorus cone angle is generally proportional to the ${ }^{31} \mathrm{P}$ chemical shift [8] $\mathrm{P}(\mathrm{t}-\mathrm{Bu})_{2}\left(\mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2}\right)$ may be more sterically demanding in its coordination complexes than is $\mathrm{P}(\mathrm{t}-$ $\mathrm{Bu})_{2}\left(\mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$.

The ${ }^{13} \mathrm{C}$ NMR spectrum shows the expected doublet resonances for C nuclei coupled to P. The large coupling constant ($20.8 \mathrm{~Hz} \mathrm{)} \mathrm{observed} \mathrm{for} \mathrm{the} \mathrm{equivalent}$ cyclobutylmethylene \mathbf{C} atoms results from multiple coupling pathways between these C atoms and the P atom $\left({ }^{3} J+{ }^{5} J\right)$.

Synthesis of trans-dichlorobis(di-t-butyl)cyclobutylmethylphosphine)platinum(II), trans-$\mathrm{PtCl}_{2}\left(\mathrm{P}(\mathrm{t}-\mathrm{Bu})_{2} \mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}$
$\mathrm{K}_{2} \mathrm{PtCl}_{4}$ reacts with $\mathrm{P}(\mathrm{t}-\mathrm{Bu})_{2}\left(\mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$ in aqueous acetone to give exclusively trans $-\mathrm{PtCl}_{2}\left(\mathrm{P}(\mathrm{t}-\mathrm{Bu})_{2} \mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}$. The trans configuration of the phosphine ligands is inferred from the characteristic appearance in the ${ }^{1} \mathrm{H}$ NMR spectrum of a pseudo-triplet resonance from the t-Bu methyl groups on phosphorus [3a]. The ${ }^{31} \mathrm{P}$ NMR spectrum contains a single resonance for the two equivalent phosphine ligands at $\delta 32.37 \mathrm{ppm}$ with $\mathrm{Pt}-\mathrm{P}$ satellite peaks having $J(\mathrm{Pt}-\mathrm{P}) 2453.6$ Hz . For comparison, the $\mathrm{P}-\mathrm{Pt}$ coupling constant in trans $-\mathrm{PtCl}_{2}\left(\mathrm{P}(\mathrm{t}-\mathrm{Bu})_{2^{-}}\right.$ $\left.\mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2}\right)_{2}$ [2b] is 2470.7 Hz while the ${ }^{31} \mathrm{P}$ NMR chemical shift is 30.8 ppm .

Structure of trans- $\mathrm{PtCl}_{2}\left(\mathrm{P}(\mathrm{t}-\mathrm{Bu})_{2} \mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}$
The crystal structure consists of neutral, centrosymmetric molecules of trans-$\mathrm{PtCl}_{2}\left(\mathrm{P}(\mathrm{t}-\mathrm{Bu})_{2} \mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}$ separated by normal Van der Waals' contacts. The closest intermolecular distance between non-hydrogen atoms occurs between atoms Cl and $\mathrm{C}(3)$ (3.642(4) \AA). The molecular structure and labeling scheme for the complex are shown in Fig. 1. Bond distances and angles are given in Table 1. Because of the crystallographically imposed symmetry, the $\mathrm{PtCl}_{2} \mathrm{P}_{2}$ portion of the structure is planar. The $\mathrm{P}-\mathrm{Pt}-\mathrm{Cl}$ angle is $89.07(3)^{\circ}$.

Bond distances and angles within the cyclobutane ring are normal [9]. The average bond length in the ring is $1.541(3) \AA$ and the average $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angle is $88.5(2)^{\circ}$. The ring adopts a butterfly conformation. The deviations from the least-squares plane calculated for atoms $\mathrm{C}(10)$ to $\mathrm{C}(13)$ are $-0.078(3), 0.111(4)$, $-0.147(4)$, and $0.159(4) \AA$, respectively. The dihedral angle between the cyclobutyl ring plane and the $\mathrm{PtCl}_{2} \mathrm{P}_{2}$ plane is 55.2°.

The t-Bu groups of the symmetry-related phosphorus ligands are staggered about the $\mathrm{Pt}-\mathrm{Cl}$ bond axis (Fig. 2); this is the same conformation as that adopted by the phosphorus ligands in trans $-\mathrm{PtCl}_{2}\left(\mathrm{P}(\mathrm{t}-\mathrm{Bu})_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2}\right)_{2}$ [10]. The $\mathrm{Pt}-\mathrm{P}$ bond length of $2.353(1) \AA$ is slightly longer than the non-ring $\mathrm{Pt}-\mathrm{P}$ bond lengths of $2.342(4)$ and $2.333(2) \AA$ in $\mathrm{PtCl}\left(\mathrm{P}(\mathrm{t}-\mathrm{Bu}) \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2}\left(\mathrm{CHCH}_{2} \mathrm{CH}_{2}\right)\right)\left(\mathrm{P}(\mathrm{t}-\mathrm{Bu})_{2} \mathrm{CH}-\right.$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$ [10] and $\overline{\mathrm{PtCl}\left(\mathrm{P}(\mathrm{t}-\mathrm{Bu})_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}\right)\left(\mathrm{P}(\mathrm{t}-\mathrm{Bu})_{2} \mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2}\right) \text { [2b], }}$ respectively. Some $\mathrm{Pt}-\mathrm{P}$ bond lengths for trans- PtClXP 2 complexes [11,12] appear in Table 2. The $\mathrm{Pt}-\mathbf{P}$ bond lengths provide a measure of steric congestion in these similar molecules. For instance, in going from $\mathrm{X}=\mathrm{Cl}$ to $\mathrm{X}=\mathrm{I}$, the $\mathrm{Pt}-\mathrm{P}$ bond lengths in the complexes trans- $\mathrm{PtX}_{2}\left(\mathrm{PCy}_{3}\right)_{2}$ increase from 2.337(2) to 2.371(2) \AA [12]. This difference has been attributed to the greater steric requirements of the

Fig. 1. The structure and atomic numbering scheme of $\operatorname{trans}-\mathrm{PtCl}_{2}\left(\mathrm{P}(\mathrm{t}-\mathrm{Bu})_{2} \mathrm{CH}_{2} \mathbf{C H C H}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}$.

TABLE 1
DISTANCES (\AA) AND ANGLES (${ }^{\circ}$) FOR trans- $\mathrm{PtCl}_{2}\left(\mathrm{P}(\mathrm{t}-\mathrm{Bu})_{2} \mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}$

$\mathrm{Pt}-\mathrm{Cl}$	$2.306(1)$	$\mathrm{Cl}-\mathrm{Pt}-\mathrm{P}$	$89.07(3)$
$\mathrm{Pt}-\mathrm{P}$	$2.353(1)$	$\mathrm{Pt}-\mathrm{P}-\mathrm{C}(1)$	$117.1(1)$
$\mathrm{P}-\mathrm{C}(1)$	$1.890(3)$	$\mathrm{Pt}-\mathrm{P}-\mathrm{C}(5)$	$107.6(1)$
$\mathrm{P}-\mathrm{C}(5)$	$1.887(3)$	$\mathrm{Pt}-\mathrm{P}-\mathrm{C}(9)$	$112.6(1)$
$\mathrm{P}-\mathrm{C}(9)$	$1.839(3)$	$\mathrm{C}(1)-\mathrm{P}-\mathrm{C}(5)$	$112.0(1)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.549(4)$	$\mathrm{C}(1)-\mathrm{P}-\mathrm{C}(9)$	$104.0(1)$
$\mathrm{C}(1)-\mathrm{C}(3)$	$1.544(4)$	$\mathrm{C}(5)-\mathrm{P}-\mathrm{C}(9)$	$102.7(1)$
$\mathrm{C}(1)-\mathrm{C}(4)$	$1.537(5)$	$\mathrm{P}-\mathrm{C}(1)-\mathrm{C}(2)$	$106.3(2)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.539(5)$	$\mathrm{P}-\mathrm{C}(1)-\mathrm{C}(3)$	$112.1(2)$
$\mathrm{C}(5)-\mathrm{C}(7)$	$1.534(5)$	$\mathrm{P}-\mathrm{C}(1)-\mathrm{C}(4)$	$114.6(2)$
$\mathrm{C}(5)-\mathrm{C}(8)$	$1.530(5)$	$\mathrm{P}-\mathrm{C}(5)-\mathrm{C}(6)$	$109.2(2)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.531(4)$	$\mathrm{P}-\mathrm{C}(5)-\mathrm{C}(7)$	$108.5(2)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.556(5)$	$\mathrm{P}-\mathrm{C}(5)-\mathrm{C}(8)$	$113.0(2)$
$\mathrm{C}(10)-\mathrm{C}(13)$	$1.542(5)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(3)$	$107.8(3)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.538(5)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(4)$	$108.4(3)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.528(5)$	$\mathrm{C}(3)-\mathrm{C}(1)-\mathrm{C}(4)$	$107.3(3)$
$\mathrm{Cl} \cdots \mathrm{C}(9)$	$3.160(3)$	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(7)$	$107.6(3)$
$\mathrm{Cl} \cdots \mathrm{P}$	$3.268(1)$	$\mathrm{C}(7)-\mathrm{C}(5)-\mathrm{C}(8)$	$108.5(3)$
$\mathrm{Cl} \cdots \mathrm{C}(10)$	$3.319(3)$	$\mathrm{P}-\mathrm{C}(9)-\mathrm{C}(10)$	$118.1(2)$
$\mathrm{Pt} \cdots \mathrm{C}(5)$	$3.431(3)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$120.5(3)$
		$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(13)$	$116.8(3)$
		$\mathrm{C}(10)-\mathrm{C}(10)-\mathrm{C}(13)$	$87.2(3)$
	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(12)$	$88.8(3)$	
	$\mathrm{C}(10)-\mathrm{C}(13)-\mathrm{C}(12)$	$88.4(3)$	

iodo ligand rather than to an electronic cis-effect [12a]. The more congested diiodo complex readily eliminates phosphine to form the iodo-bridged dimer $\left[\operatorname{PtI}\left(\mathrm{PCy}_{3}\right)\right]_{2}(\mu-\mathrm{I})_{2}[12 \mathrm{~b}]$.

Fig. 2. A view down the $\mathrm{P}-\mathrm{Pt}-\mathrm{P}$ bond axis of trans- $\mathrm{PtCl}_{2}\left(\mathrm{P}(\mathrm{t}-\mathrm{Bu})_{2} \mathrm{CH}_{2} \widetilde{\mathrm{CHCH}}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}$.

TABLE 2
Pt-P BOND LENGTHS (\AA) FOR trans-PtClXP 2 COMPLEXES ($\mathrm{X}=\mathrm{Cl}$, alkyl)

Complex	$\mathrm{Pt}-\mathrm{P}(1)$	$\mathrm{Pt}-\mathrm{P}(2){ }^{a}$	Ref.
$\mathrm{PtCl}\left(\mathrm{CH}_{3}\right)\left(\mathrm{PMePh}_{2}\right)_{2}$	$2.291(2)$	$2.292(2)$	11 a
$\mathrm{PtCl}\left(\mathrm{C}(\mathrm{SiMe})_{3}\right)\left(\mathrm{PMePh}_{2}\right)_{2}$	$2.294(5)$	$2.295(5)$	11 b
$\mathrm{PtCl}\left(\right.$ vinyl) $\left(\mathrm{PEt}_{2} \mathrm{Ph}\right)_{2}$	$2.295(3)$	$[2.295(3)]$	11 c
$\mathrm{PtCl}($ acetyl $)\left(\mathrm{PMePh}_{2}\right)_{2}$	$2.297(2)$	$2.301(2)$	11 d
$\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)_{2}$	$2.298(18)$	$[2.298(18)]$	11 e
$\mathrm{PtCl}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)_{2}$	$2.297(6)$	$2.303(6)$	11 f
$\mathrm{PtCl}_{2}($ hexylcarbonyl $)\left(\mathrm{PPh}_{3}\right)_{2}$	$2.301(3)$	$2.302(3)$	11 g
$\mathrm{PtCl}_{2}(\sigma$ allyl $\left.) \mathrm{PPh}_{3}\right)_{2}$	$2.302(2)$	$2.304(2)$	11 h
$\mathrm{PtCl}_{2}\left(\mathrm{PCy}_{3}\right)_{2}$	$2.337(2)$	$[2.337(2)]$	12 a
$\mathrm{PtCl}_{2}\left(\mathrm{P}(\mathrm{t}-\mathrm{Bu})_{2} \mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}$	$2.353(1)$	$[2.353(1)]$	this work
$\mathrm{PtCl}_{2}\left(\mathrm{P}(\mathrm{t}-\mathrm{Bu})_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2}\right)_{2}$	$2.373(1)$	$[2.373(1)]$	10

${ }^{a}$ [] indicates the trans-phosphorus atoms are crystallographically equivalent.

Though steric congestion in trans $-\mathrm{PtCl}_{2}\left(\mathrm{P}(\mathrm{t}-\mathrm{Bu})_{2} \mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}$ is pronounced, the ligand crowding does not lead to strong non-bonding interactions between the Cl atom and $\mathrm{t}-\mathrm{Bu}$ carbon atoms: the shortest such interaction is $\mathrm{Cl} \cdots \mathrm{C}(4) 3.387(3) \AA$. Atom $\mathrm{C}(9)$, the non-ring methylene carbon atom of the methylcyclobutyl group, is only $3.160(3) \AA$ from the Cl atom; its H atoms point away from the $\mathrm{Pt}-\mathrm{Cl}$ bond axis. As judged from the $\mathrm{C}-\mathrm{P}-\mathrm{C}$ angles, the steric requirements of the t - Bu groups exceed those of the methylcyclobutyl group: the $(\mathrm{t}-\mathrm{Bu})-\mathrm{P}-\left(\mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$ angles are $104.0(1)$ and $106.3(2)^{\circ}$ while the ($\mathrm{t}-$ $\mathrm{Bu})-\mathrm{P}-(\mathrm{t}-\mathrm{Bu})$ bond angle is $112.0(1)^{\circ}$. This angle is $112.2(2)^{\circ}$ in trans $-\mathrm{PtCl}_{2}(\mathrm{P}(\mathrm{t}-$ $\left.\mathrm{Bu})_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2}\right)_{2}$ [10].

If we compare the molecular structures it appears that trans $-\mathrm{PtCl}_{2}(\mathrm{P}(\mathrm{t}-$ $\left.\mathrm{Bu})_{2} \mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}$ is less sterically congested than is trans $-\mathrm{PtCl}_{2}(\mathrm{P}(\mathrm{t}-$ $\left.\mathrm{Bu})_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2}\right)_{2}$ [10]. This cyclopropyl complex on silica forms the platinacyclobutane complex $\overline{\mathrm{PtCl}\left(\mathrm{P}(\mathrm{t}-\mathrm{Bu}) \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2}\left(\mathrm{CHCH}_{2} \mathrm{CH}_{2}\right)\right)\left(\mathrm{P}(\mathrm{t}-\mathrm{Bu})_{2} \mathrm{CH}-\right.}$ $\mathrm{CH}_{2} \mathrm{CH}_{2}$) [10]. The non-ring $\mathrm{Pt}-\mathrm{P}$ bond distance in this orthometallated complex is 0.031 (2) \AA shorter than the $\mathrm{Pt}-\mathrm{P}$ bond distance in the parent, a reflection of the extent to which steric congestion is relieved upon orthometallation [10]. A similar bond contraction probably occurs for trans $-\mathrm{PtCl}_{2}\left(\mathrm{P}(\mathrm{t}-\mathrm{Bu})_{2} \mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2}\right)_{2}$ upon orthometallation. Thus we can estimate a $\mathrm{Pt}-\mathrm{P}$ bond distance in this cyclopropylmethyl complex of $2.364 \AA$ by adding $0.031 \AA$ to the non-ring $\mathrm{Pt}-\mathrm{P}$ bond distance in $\mathrm{PtCl}\left(\mathrm{P}(\mathrm{t}-\mathrm{Bu})_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}\right)\left(\mathrm{P}(\mathrm{t}-\mathrm{Bu})_{2} \mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2}\right)$ [2b]. This estimated bond distance is very slightly longer than the $\mathrm{Pt}-\mathrm{P}$ bond distance in the present complex trans $-\mathrm{PtCl}_{2}\left(\mathrm{P}(\mathrm{t}-\mathrm{Bu})_{2} \mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}, 2.353(1) \AA$. It is interesting that the ${ }^{31} \mathrm{P}$ NMR chemical shifts are consistent with a smaller cone angle in the present phosphine.

The delicate balance of steric forces in trans $-\mathrm{PtCl}_{2}\left(\mathrm{P}(\mathrm{t}-\mathrm{Bu})_{2} \mathrm{CH}_{2} \mathrm{CHCH}_{2}\right.$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}$ is striking. Ligand crowding is minimized by slight distortions of tetrahedral angles between phosphorus substituents and of right angles in the platinum coordination sphere. Planarity of the $\mathrm{PtP}_{2} \mathrm{Cl}_{2}$ unit is not disrupted. Perhaps in this way non-bonded repulsions are satisfied and a spontaneous orthometallation reaction, like those observed for trans $-\mathrm{PtCl}_{2}\left(\mathrm{P}(\mathrm{t}-\mathrm{Bu})_{2} \mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2}\right)_{2}$ [2b] and $\left[\mathrm{PtBrP}(\mathrm{t}-\mathrm{Bu})_{2} \mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right]_{2}(\mu-\mathrm{Br})_{2}$ [5], does not occur.

Experimental

General remarks

All reactions were carried out under an atmosphere of pre-purified dinitrogen with the use of standard Schlenk-line techniques. $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ was used as received from Johnson-Matthey, Inc. (Di-t-butyl)chlorophosphine and cyclobutylmethanol were used as received from Alfa Products and Aldrich Chemical Company, respectively. Solvents were purified by standard methods.

Elemental analysis of $\mathrm{P}(\mathrm{t}-\mathrm{Bu})_{2}\left(\mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) \cdot \mathrm{HBr}$ was performed by Galbraith Laboratories, Inc., Knoxville, TN ; analysis of trans- $\mathrm{PtCl}_{2}\left(\mathrm{P}(\mathrm{t}-\mathrm{Bu})_{2^{-}}\right.$ $\left.\mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}$ was performed by Micro-Tech Laboratories, Skokie, IL. Infrared spectra were obtained with the use of a Perkin-Elmer 283 spectrometer from samples prepared as KBr pellets. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$ NMR spectra were recorded on a JEOL-FX90 or JNM-FX270 FT-NMR spectrometer. ${ }^{31} \mathrm{P}$ positive chemical shifts are downfield from $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$.

X-ray data were collected with the use of $\mathrm{Mo}-K_{\alpha_{1}}$ radiation on an Enraf-Nonius CAD4 diffractometer and all calculations were performed on a Harris 1000 computer by methods and programs standard in this laboratory [13].

Synthesis of (di-t-butyl)cyclobutylmethylphosphine, $\mathrm{P}(\mathrm{t}-\mathrm{Bu})_{2}\left(\mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$

The synthesis is analogous to that reported for (di-t-butyl)cyclopropylmethylphosphine [2b]. One equivalent of (di-t-butyl)phosphine [14] was added to a solution of $0.56 \mathrm{~g}(0.038 \mathrm{~mol})$ of cyclobutylmethyl bromide (synthesized by bromination of cyclobutylmethanol by the method of Ingold et al. [15]) in 20 ml isobutyl methyl ketone. The mixture was heated at mild reflux for 6 h ; the white hydrobromide adduct of $\mathrm{P}(\mathrm{t}-\mathrm{Bu})_{2}\left(\mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$ precipitated as the reaction mixture cooled. Solvent was removed under vacuum and the hydrobromide salt was washed with hexane. Anal. Found: C, 51.47; H, 9.22; P, 10.25. $\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{BrP}$ calc.: C $52.80 ; \mathrm{H}, 9.56 ; \mathrm{P}, 10.49 \%$. The phosphine was isolated in approximately 40% yield by treatment of the hydrobromide salt with base. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 2.39 (d, $\mathrm{PCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}, J 10.5 \mathrm{~Hz}$), 1.60-2.29 (complex cyclobutyl region), $1.38\left(\mathrm{~d}, \mathrm{PC}\left(\mathrm{CH}_{3}\right)_{3},{ }^{3} J(\mathrm{P}-\mathrm{H}) 16.6 \mathrm{~Hz}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 35.98\left(\mathrm{~d}, \mathrm{CH}_{2}-\mathrm{P}\right.$, $\left.{ }^{1} J(\mathrm{P}-\mathrm{C}) 22.0 \mathrm{~Hz}\right), 30.80\left(\mathrm{~d}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3},{ }^{1} J(\mathrm{P}-\mathrm{C}) 19.5 \mathrm{~Hz}\right), 29.91\left(\mathrm{~d}, \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}\right.$, $\left.{ }^{2} J(\mathrm{P}-\mathrm{C}) 11.0 \mathrm{~Hz}\right), 29.60\left(\mathrm{~d}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3},{ }^{2} J(\mathrm{P}-\mathrm{C}) 13.4 \mathrm{~Hz}\right), 29.10\left(\mathrm{~d}, \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$, $\left.\left({ }^{3} J+{ }^{5} J\right)(\mathrm{P}-\mathrm{C}) 20.8 \mathrm{~Hz}\right), 17.99\left(\mathrm{~s}, \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 21.47$.

Synthesis of trans-dichlorobis(di-t-butyl)cyclobutylmethylphosphineplatinum(II), trans-$\mathrm{PtCl}_{2}\left(\mathrm{P}(\mathrm{t}-\mathrm{Bu})_{2} \mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}$
(Di-t-butyl)cyclobutylmethylphosphine ($0.50 \mathrm{~g}, 2.3 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{PtCl}_{4}(0.355 \mathrm{~g}$, 0.855 mmol) were combined in 10 ml aqueous acetone and stirred together for 12 h . The yellow precipitate was filtered and recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane in 94% yield. Anal. Found: C, $44.96 ; \mathrm{H}, 7.85 ; \mathrm{P}, 8.98 . \mathrm{C}_{26} \mathrm{H}_{54} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Pt}$ calc.: C, 44.96; H, 7.84; P, 8.92\%. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.77$ (br m, $\left.\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}\right), 1.81-2.30$ (complex cyclobutyl methylene region), $1.74\left(\mathrm{~m}, \mathrm{CH}_{2}, \mathrm{P}\right), 1.46\left(\mathrm{t}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3},{ }^{3} \mathrm{~J}(\mathrm{P}-\mathrm{H})\right.$ apparent) 6.5 Hz$).{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 36.00\left(\mathrm{t}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3},{ }^{1} J(\mathrm{P}-\mathrm{C})\right.$ (apparent) 10.4 Hz), 33.46 (s, $\left.\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}\right), 32.29\left(\mathrm{~s}, \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 30.62\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 23.44 (br, $\mathrm{CH}_{2} \mathrm{P}$), $18.34\left(\mathrm{~s}, \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right),{ }^{31} \mathrm{P}$ NMR $\delta 32.37$ (s, J(Pt-P) 2453.6 Hz) IR $\nu(\mathrm{Pt}-\mathrm{Cl}) 330 \mathrm{~cm}^{-1}$.

X-Ray study of trans-PtCl $\left(\mathrm{P}(t-\mathrm{Bu})_{2} \mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}$

Crystals suitable for X -ray diffraction study were obtained as parallelepipeds by slow evaporation of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane solution of trans $-\mathrm{PtCl}_{2}\left(\mathrm{P}(\mathrm{t}-\mathrm{Bu})_{2} \mathrm{CH}_{2}{ }^{-}\right.$ $\left.\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}$. Lattice constants were obtained from least-squares analysis of 25 reflections that had been centered on a Nonius CAD4 diffractometer. Systematic absences in the data ($h 0 l, l=2 n+1 ; 0 k 0, k=2 n+1$) together with the presence of monoclinic symmetry are strongly indicative of the centrosymmetric space group $C_{2 h}^{5}-P 2_{1} / c$. Six standard reflections monitored every 3 h during data collection

TABLE 3
CRYSTAL AND REFINEMENT DATA FOR trans- $\mathrm{PtCl}_{2}\left(\mathrm{P}(\mathrm{t}-\mathrm{Bu})_{2} \mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}$

Molecular formula	$\mathrm{C}_{26} \mathrm{H}_{54} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Pt}$
Formula wt., amu	694.66
Space group	$C_{2 h}^{5}-\mathrm{P} 1_{1} / \mathrm{c}$
$a(\AA)$	8.521(2)
$b(\AA)$	12.774(1)
$c(\AA)$	14.374(2)
$\beta\left({ }^{\circ}\right)$	104.71(2)
$V\left(\AA^{3}\right)$	1513.3
Z	2
T of data collection	$113 \mathrm{~K}^{\text {a }}$
Crystal dim., (mm)	$0.12 \times 0.21 \times 0.73$
Crystal vol. (mm^{3})	0.020
ρ, calculated (113 K) (g/ cm^{3})	1.524
Radiation	$\begin{aligned} & \text { graphite-monochromatized Mo- } K_{\alpha} \\ & \left(\lambda\left(K_{\alpha_{1}}\right) 0.7093 \AA\right) \end{aligned}$
Linear absorption coefficient (cm^{-1})	49.77
Transmission factors	0.332 to $0.557{ }^{\text {b }}$
Take-off angle (${ }^{\circ}$)	2.25
Scan mode	$\omega-2 \theta$
Scan speed (${ }^{\circ} \min ^{-1}$)	4.00
Scan range (${ }^{\circ}$)	0.5 below $K_{\alpha_{1}}$ to 0.5 above $K_{\alpha_{2}}$
Background counts	extension of $1 / 4$ scan range on each side
Rescan condition	$I \leq 3 \sigma(I)$ rescanned for a maximum time of 100 s
Data collected	$\pm h, k, l$
2θ limits (${ }^{\circ}$)	2.4-66.0
Unique data	5667
Unique data ($F_{0}^{2}>3 \sigma\left(F_{0}^{2}\right)$)	4223
p factor	0.04
Final no. of variables	140
$R\left(F^{2}\right)$ (including $\left.F_{\mathrm{o}}{ }^{2}<0\right)$	0.042
$R_{\text {w }}\left(F^{2}\right)$ (including $\left.F_{0}^{2}<0\right)$	0.088
$R(F)$ for $F^{2}>3 \sigma\left(F_{0}^{2}\right)$	0.028
Error in observation of unit weight (e^{2})	1.11

[^0]TABLE 4
POSITIONAL PARAMETERS AND $B_{\text {cq }}\left(\AA^{2}\right)$ FOR trans- $\mathrm{PtCl}_{2}\left(\mathrm{P}(\mathrm{t}-\mathrm{Bu})_{2} \mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}$

Atom	x	y	z	B
Pt		0	$1 / 2$	$1 / 2$
P	$0.037495(90)$	$0.355233(59)$	$0.406688(53)$	$1.168(3)$
Cl	$-0.06954(11)$	$0.599399(61)$	$0.361697(53)$	$2.03(1)$
C(1)	$-0.03450(37)$	$0.22378(23)$	$0.43982(22)$	$1.52(6)$
C(2)	$-0.19666(42)$	$0.24411(28)$	$0.46677(24)$	$2.01(8)$
C(3)	$-0.06873(45)$	$0.14646(25)$	$0.35449(25)$	$2.10(8)$
C(4)	$0.08266(45)$	$0.16939(25)$	$0.52514(25)$	$2.05(8)$
C(5)	$0.25822(37)$	$0.35232(26)$	$0.40505(23)$	$1.77(7)$
C(6)	$0.36435(41)$	$0.36029(30)$	$0.50883(27)$	$2.27(8)$
C(7)	$0.29361(42)$	$0.44872(32)$	$0.35001(28)$	$2.44(9)$
C(8)	$0.30393(42)$	$0.25422(32)$	$0.35672(28)$	$2.39(9)$
C(9)	$-0.06684(36)$	$0.37057(23)$	$0.27870(20)$	$1.46(6)$
C(10)	$-0.25086(37)$	$0.38684(25)$	$0.25175(22)$	$1.64(6)$
C(11)	$-0.36634(42)$	$0.30065(29)$	$0.19609(25)$	$2.13(8)$
C(12)	$-0.46690(44)$	$0.38698(33)$	$0.13372(27)$	$2.60(9)$
C(13)	$-0.32140(45)$	$0.46013(33)$	$0.16612(27)$	$2.39(8)$

showed no significant decomposition. Details of data collection and refinement are summarized in Table 3.

The position of the Pt atom was determined from a Patterson map. The positions of the remaining non-hydrogen atoms were obtained from a series of electron density syntheses. Approximate positional parameters for methyl hydrogen atoms were obtained from difference electron density maps calculated immediately prior to the final cycle of least-squares refinement on $F_{0}{ }^{2}$. These parameters along with the positional parameters for methylene and methine hydrogen atoms were then idealized. In these calculations a $\mathrm{C}-\mathrm{H}$ bond length of $0.95 \AA$ was assumed and a given H atom was assigned an isotropic thermal parameter $1 \AA^{2}$ greater than the equivalent isotropic thermal parameter of the C atom to which it is attached. Parameters for the hydrogen atoms were held fixed during the final cycle. Table 4 presents the final positional parameters, Table 5 the anisotropic thermal parameters [16], Table 6 the hydrogen-atom positions [16], and Table 7 a listing of $10\left|F_{\mathrm{o}}\right|$ vs. $10\left|F_{\mathrm{c}}\right|$ [16].

Acknowledgments

This work was supported by the U.S. National Science Foundation (CHE-8308076). We thank Johnson-Matthey Inc., Malvern, PA, for the loan of Pt salts used in this laboratory.

References

1 K.C. Bishop, III, Chem. Rev., 76 (1976) 461.
2 (a) W.J. Youngs, B.L. Simms, and J.A. Ibers, J. Organomet. Chem., 272 (1984) 295; (b) W.J. Youngs and J.A. Ibers, Organometallics, 2 (1983) 979; (c) W.J. Youngs, J. Mahood, B.L. Simms, P.N. Swepston, J.A. Ibers, M. Shang, J. Huang, and J. Lu, Organometallics, 2 (1983) 917.
3 (a) B.L. Shaw, J. Organomet. Chem., 200 (1980) 307, and references therein; (b) A.J. Cheney, B.E. Mann, B.L. Shaw, and R.M. Slade, J. Chem. Soc. (A), 3833 (1971).

4 J.P. Collman and L.S. Hegedus, Principles and Applications of Organotransition Metal Chemistry; University Science Books, 1980, p. 214.
5 We have observed formation of σ-cyclobutyl complexes $\left[\mathrm{Pt}\left(\mathrm{P}(\mathrm{t}-\mathrm{Bu})_{2} \mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right)\right]_{2}(\mu-\mathrm{Br})_{2}$ from $\left[\mathrm{PtBr}\left(\mathrm{P}(\mathrm{t}-\mathrm{Bu})_{2} \mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)\right]_{2}(\mu-\mathrm{Br})_{2}$.
6 G.M. Kosolapoff and L. Maier (Eds.), Organic Phosphorus Compounds, Wiley-Interscience; New York, 1972, Vol. 1.
7 (a) E.A. Hill, C.L. Harder, R. Wagner, D. Meh, and R.P. Bowman, J. Organomet. Chem., 302 (1986) 5; (b) E.A. Hill, H.G. Richey, Jr., and T.C. Rees, J. Org. Chem., 28 (1963) 2161.
8 C.A. Tolman, Chem. Rev., 77 (1977) 313.
9 (a) C.J.L. Lock, M. Zvagulis, Inorg. Chem., 20 (1981) 1817; (b) W.S. Sheldrick and M. Morr, Acta Crystallogr., Sect. B, 36 (1980) 2328; (c) Y.G. Gelders, C.J. De Ranter, and A.R. Overbeek, Acta Crystallogr., Sect. B, 35 (1979) 1111.
10 B.L. Simms, M. Shang, J. Lu, W.J. Youngs, and J.A. Ibers, Organometallics, in press.
11 (a) M.A. Bennett, H.-K. Chee, and G.B. Robertson, Inorg. Chem., 18 (1979) 1061; (b) B. Jovanović, L. Manojlović-Muir, and K.W. Muir, J. Chem. Soc., Dalton Trans., (1974) 195; (c) C.J. Cardin and K.W. Muir, J. Chem. Soc., Dalton Trans., (1977) 1593; (d) M.A. Bennett, K.-C. Ho, J.C. Jeffery, G.M. McLaughlin, and G.B. Robertson, Aust. J. Chem., 35 (1982) 1311; (e) G.G. Messmer and E.L. Amma, Inorg. Chem., 5 (1966) 1775; (f) W. Conzelmann, J.D. Koola, U. Kunze, and J. Strähle, Inorg. Chim. Acta, 89 (1984) 147; (g) R. Bardi, A.M. Piazzesi, A. Del Pra, G. Cavinato, and L. Toniolo, J. Organomet. Chem., 234 (1982) 107.
12 (a) A. Del Pra and G. Zanotti, Inorg. Chim. Acta, 39 (1980) 137; (b) N.W. Alcock and P.G. Leviston, J. Chem. Soc.., Dalton Trans., (1974) 1834.

13 J.M. Waters and J.A. Ibers, Inorg. Chem., 16 (1977) 3273.
14 H. Hoffmann and P. Schellenbeck, Chem. Ber., 99 (1966) 1134.
15 K.U. Ingold, B. Maillard, and J.C. Walton, J. Chem. Soc., Perkin Trans. II, (1981) 970.
16 Supplementary material includes anisotropic thermal parameters (ORTEP-II-Type 8) (Table 5), hydrogen-atom positions (Table 6), and structure amplitudes (Table 7). See NAPS document no. 04480 for 26 pages of supplementary material. Order from NAPS c/o Microfiche Publicatios, P.O. Box 3513, Grand Central Station, New York, NY 10163. Remit in advance in US funds only $\$ 8.55$ for photocopies or $\$ 4.00$ for microfilm. Outside the US and Canada add postage of $\$ 1.50$ for the first 20 pages and $\$ 1.00$ for each 10 pages of material thereafter. $\$ 1.50$ for microfiche postage.

[^0]: ${ }^{\text {a }}$ The low-temperature system for the Nonius CAD4 diffractometer is based on a design by Prof. J.J. Bonnet and S. Askenazy and is commercially available from Soterem, Z.T. de Vic, 31320 Castanet-Tolosan, France. ${ }^{b}$ The analytical method as employed in the Northwestern absorption program AGNOST was used for the absorption correction (J. de Meulenaer and H. Tompa, Acta Crystallogr., 19 (1965) 1014).

